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Splines to Assess 
Uncertainties in 
Alpha Curves
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The degree of criticality of a nuclear 
assembly is quantified by α, the 
logarithmic derivative of the 
neutron flux. The evolution of the 

criticality in time is called the “α-curve.” 
Measurements of the α-curve are one of the 
most useful sources of information about the 
performance of a nuclear device. 

The measurement of the α-curve is 
complicated by the extreme physical 
conditions and short time scales of the 
nuclear reaction. Ingenious methods of 
measuring the α-curve have been developed 
for use in nuclear testing. Chief among 
these is a technique introduced by the 
astrophysicist Bruno Rossi which enables 
the α-curve to be inferred from the trace 
of a suitably configured oscilloscope. 
An extraordinary amount of effort has been 
expended in recording and analyzing Rossi 
trace data generated by nuclear tests. These 
measurements, however, have uncertainties, 

which have not been fully quantified. In order 
to make full use of the measured data, and to 
understand which inferences are or are not 
justified from the data, the uncertainty in the 
α-curve needs to be quantified. The purpose 
of the present work is to show how the 
method of smoothing splines, as developed 
by Wahba and others [1], can be used to 
quantify the measurement error in α-curves 
inferred from Rossi traces. The use of splines 
to analyze Rossi traces was first introduced by 
Hanson and Booker [2]. The use of Wahba’s 
formalism was suggested by David Sharp.

The raw data is provided in the form of a 
Rossi trace, as recorded on photographic film 
or some similar medium. A synthetic trace is 
shown in Fig. 1. The film is placed in a reader, 
and a large number of individual points of the 
trace are measured. There are two primary 
sources of error: random measurement 
uncertainty and systematic distortions due 
to imperfections in the electronics. Here we 
restrict our attention to the measurement 
uncertainty.

The method of smoothing splines can be 
interpreted in terms of a probabilistic model 
for noisy measurements of an unknown 
function f. In our case, f(t) is the signal flux, 
as a function of time. The prior measure 
on the space of functions f is chosen to be 
(m – 1)-fold integrated Wiener measure [3], 
which is essentially the m-fold integral 
of white noise. The likelihood is that 
corresponding to independent measurements 
yi of f(ti)with variances σi

2. With these 
assumptions, it can be shown that the Bayes’ 
estimate is the solution to the following 
minimization problem: Choose f to minimize
 

 wi yi − f ti( )[ ]2 + p f m( ) u( )[ ]2 du,∫
i

∑

where wi are appropriate weights, and p is 
determined from the data [1]. This is exactly 
the type of minimization problem that arises 
in the variational approach to splines, and 
indeed, the solution is a natural spline of 
order m, with knots at the measurement 
points. 

Figure 1—
A synthetic Rossi trace.
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The probabilistic model provides the 
necessary foundation for estimating f as the 
posterior mean (Bayes’ estimate), and also 
for determining the uncertainty in f and 
its derivatives. In particular, it enables us 
to compute uncertainties in α, which is the 
logarithmic derivative of f.

Figure 1 shows a synthetically generated 
Rossi trace, in arbitrary units, with both 
random and systematic errors. For this 
data, α is assumed constant, so the flux rises 
exponentially. The vertical axis is the signal 
flux. The horizontal trace varies like cos ωt, 
so that x(t) encodes the time. An initial step, 
not discussed here, is to recover the time 
from x. The output of this step is a set of noisy 
flux measurements. The flux curve, the alpha 
curve, and its uncertainties can be estimated 
from this data. 

The estimate of the α-curve and its 
uncertainty corresponding to Fig. 1 is shown 
in Fig. 2. I emphasize that the result shown 
here should regarded as an example of the 
technique, and not an assessment of the 
true uncertainty in experimental α-curves. 
The latter requires accurate estimates of the 
uncertainties in the measured data.

Figure 2—
This figure shows a 
typical estimate of 
the α-curve and its 
uncertainty, using the 
method of the text.
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